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ABSTRACT
Isotonic estimation involves the estimator of a function which is known to

be increasing with respect to a specified partial order. For the case of a linear
order, a general theorem is given which simplifies and extends the techniques of
Prakasa Rao (1966) and Brunk (1970). Sufficient conditions for a specified limit
distribution to obtain are expressed in terms of a local condition and a global
condition. The theorem is applied to several examples. The first example is
estimation of a monotone function u on [0,1] based on observations (i/n,xn.),

.
where BX.; = p(i/n). In the second example, i/n is replaced by random T+
Robust estimators for this problem are described. Estimation of a monotone
density function is also discussed. It is shown that the rate of convergence

depends on the order of first non-zero derivative and that this result can obtain

even if the function is not monotone over its entire domain.

AMS (MOS) Subject Classifications: 60F05, 62E20, 62G05, 62G20.
Key Words: Isotonic estimation, asymptotic distribution theory.
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SIGNIFICANCE AND EXPLANATION

In many experiments one would expect that an increase in "input" will produce
an increase in “output". For instance, the greater the vitamin concentration, the
faster the growth of organisms; the greater the force applied to a rod, the greater
the elongation. However, due to random effects, experimental results may not show
the expected monotonic behavior.

The most common method for dealing with this situation is to use curve-fitting
(e.g., by least-squares), assuming some parametric form {(e.qg., polynomial behavior).
However there are many situations where this is not appropriate.

This paper discusses the estimation of functions which are known to be monotone,
but which are not assumed to have any particular parametric form. The exact distri-
butions of these estimators is very complicated, but some limiting distributions are
known. The paper proves a relatively abstract theorem, which can then be used to
obtain all the known limiting distributions, and to extend these results. Some new
estimators are also described. The theorem is applied to estimation of monotone
functions and to estimation of monotone density functions.

The results are applied to one of the most common non-parametric methods for
dealing with situations where failure of the data to exhibit the expected monotoni-
city is regarded as a sampling artifact, namely the isotonized mean: two neighbour-
g observations that do not have the expected monotonic behavior are replaced by
two numbers, each equal to the mean of the observations. This procedure is repeated
until the estimator is a monotone function. The results in this paper show that the
isotonized mean is sensitive to extreme values. It is shown the linear combinations
of order statistics can be used to obtain estimators which are more robust than the

1sotonized mean.

The responsibility for the wording and views expressed in this descriptive summary
Lies with MRC, and not with the author of this report.
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ASYMPTOTIC DISTRIBUTIONS OF SLOPE OF GREATEST
CONVEX MINORANT ESTIMATORS

Sue Leurgans

1. Introduction

Suppose for each of n independent variables xi there is a known ti such that the
distribution of xi is believed to be determined by and to vary with ti. Let Ft. denote

i

the cumulative distribution function (CDF) of xi. Let 6(*) be a specified functional on a
subspace of cumulative distribution functions. 0 induces u, a real-valued function on the
space of t's by u(t) = O(Ft)' » is an isotonic function if there is a partial order on the
space of t's such that whenever t is "greater than or equal to" s, u(t) > u(s). This
paper concentrates on the case in which the ti are real numbers with the usual ordering and
U an isotonic function is equivalent to yu a non~decreasing function. An isotonic (or mono-
tone) estimator of u will be an estimator which always has the known monotonicity, but is not
restricted to a particular functional form. Use of an isotonic estimator is appropriate if the
order relation is certain, that is, if the failure of the observations to exhibit the specified
order is an artifact of the randomness of the observations dominating the unknown underiying
deterministic increasing function.

The least-squares solution to this problem has been known for some time. Aver, et.al.

(1955) and van Feden (1956) describe an estimator ﬁ“(t) (the isotonized mean) which is the

n
o Al

monotone function with smallest error sum of souares ( ) (xi - u(ti»‘, u  nondecreasing) .

E i=1

5 adaptively pools observations until the group means are increasing. Barlow, et.al. (1977,

Chapter 1) discuss several algorithms for computation of this estimator. We shall use the fact

that u“(s) is the left hand slope of the greatest convex minorant of the cumulative sum pro-

i

L
i=1
stated by Brunk (1970). This paper shows that Brunk's result can be sharpened and extended

cess of the X's (((j, Y xi). 0 < 3 < nb. The asymptotic distribution of this estimator was

through the use of a theorem on the distribution of the slopes of greatest convex minorants

Sponsored by the United States Army under Contract No. DAAG2O=75-C=0024. This material s
based upon work supported by the National Science Foundation under Grant Nos. MCS/77-16974
and MCST8-09526,
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of processes. This theorem can also be used to extend the results of Prakasa Rao (1969) on
estimation of monotone densities, as well as to obtain asymptotic distributions of other eati-
mators. The general theorem is stated in section 2, applications of the theorem are indicated
in section 3, and the general theorem is proved in section 4. The final section contains a

discussion of the relationship of the results described here to other research,
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2. The General Theorem

The asymptotic distribution of these estimators is of interest because the finite sample
distyibutions are especially complicated in all but the very simplest cases. However, to ob- {
tain limiting results, it is necessary to specify how the limits are obtained. If, for example,
the set of t's to which X's correspond i1s fixed (and hence finite), while the number of
X's observed at each t  becomes infinite, and if the mean of those X's corresponding to a
particular t  converges to u(t) and u  takes on a distinct value at each of the t's fm

which observations are recorded, then these means are asymptotically consistent, asymptotically

independent, and asymptotically normal (if rescaled in the usual manner) (See Parsons (197%),
for further discussion of this case).

This paper concentrates on the case in which the number of distinct t's at which obser-
vations are made becomes infinite. Exact conditions on the t's appear below. Meanwhile we
assume that for each n  we observe “Tni' x"‘), 1= 1(1)n) where X“i ~ P . We can assume

ni
that the observations ave indexed so that T i increases (strictly) with 1 for every n. 1If
the T's are random, xm 1s thus the concomitant of the 1th order statistic of the T's.
ince the tsotomeity of the underlying function p  is preserved by monotone increasinag func-
tions of T, 1t will often be convenient to work with (((“i. X“‘\ i = 1 (1)n}, where
o i/ The ‘n\ are essentially equally spaced in the unit interval. 1t F“ is the right

continuous (empirical) distvibution function of the Tn\' and Q“ is the left continuous

quantile function, t P Ty e T =0 .
i ;s . ni n'Tas g ot = 9ty

As sugaested by the isotonized mean, we may wish to work with estimators of the form

u (%) slogeom(s) {(t, '.'.“u)) t « T} where slogecom(s){A}  is the left-hand slope at s ot

the greatest convex minorant of the set of points A, '.'.n(H 18 a random continuous process and
U 1s an anterval containing s, Theorem 1 states that if the process '.'“ satisfies two con-
ditions, then the asymptotic behavior of u“(s) 18 known. While the conditions look quite
complicated, they can be described intuitively and verified in practice. Refore examining the
conditions, it 1s useful to note that the proof uses the approximate estimators

Moy (s) = slogeom(s) {(t, :’.“(QH. |t-s| < 2en"F), W (%) 18 seen to be a local version of u“(n.
¢ c




The first condition zn is that the increments of zn stay above certain lines over cer-

tain regions with sufficiently high probability. Remark that these lines depend on n and ¢

.

although this dependence is suppressed in some of the notation. Therefore weak convergence of

the zn processes will not imply Condition 1.

Condition 1 (Hittina Times)

lim lim P{2 (t) - 2 (8) < L. (t), some t ¢ 1.} =0 i =1(1)4
com poe n n 1 1

where L‘(t) is a line and l‘ an interval.

ll(t) = (==, 8] n T
‘2(') - s 02cn-p. ) nT

l“" - l'.‘\ nT

-pl n

l‘(t)  (~=, 8 - 2¢cn A

The first two lines are defined as follows:

Ll(t) = - t(n,e) - (l-t);(n.c)
Ly(t) = = t(n,e) = (-n-tyﬁ(n.c),

where
_ - 1=P/2p
uin,e) = u(s) + (2en p, p(s)

8 = g 4 2cn-P
n

- “ - - 7" “‘
tin,e) = g(1 = 2'P"1V728)U=PI/2p (0, SR /2 QAeR)/20 o o oy

for some constants w(s), p, p(s) and .
L‘ is obtained by using the formula for L‘ with u(n,c) is replaced by
P, 1P/

uis) = (2en” o(s).

L‘ is obtained from L2 by making the same substitution and replacing s, by s - 2en’ F,

The second condition is that a suitably renomalized version of zn converge to a Wiener

process about a convex function. This condition will be used to obtain the limiting behavior




ot “m'(‘) for ¢ fixed and n large., Thus the global first condition will be used to show

that the local behavior of :'" determines the asymptotic behavior of B .

Comdition 2 (Local Weak Convergence)

-p - ‘-‘\
|\(L!l\(s * Jen ) = ‘.'.“(s)) - don t u(s)
t, - -
; L=p, 1% ~
(2en' B a(s) |t} <1 new

- S
(e, Wity + 2L (51730 ) (14p)/(2p)
o () bk

where p, u(s), o(s8) and o(s8) are constants  (0(s) and o(s8) positive): W(t)

18 a

two-sided standard Wiener process on  [=1,+1]1; and the convergence is weak convergence on

Cl=1,¢11.

Theorem 3.1

It for some constant u(s)  and positive constants o(s), p(s) and p, the processes

satisty Conditions 1 and 2 above and un(s\ = slogeom(s) {(t, “' t€))y & € Ti¢ then

“n
1-p
n oo (8) - u(s)
\

o !‘_l;_\._,__,“‘_, a x'\P ;

(o(s)) '(ﬂ(.-:”‘

1+p
(p) d : ’ I o 4 . .

where X = slogeom(0) {(t, w(t) + |t} .l! oW and W(t) 18 a standard wWiener pro

Cess on R with W(O) = 0O,

The following extension of Theorem 2.1 will be used for Corollary 3.2 below.

It will not

be proved explicitly, but follows fram a routine modification of Step Y of the proot .

Corollary 2.2
- -
Under the conditions of Theorem 2.1, if l‘“ ~ \\p(n ‘\ and u“\::\ - \.“(Ml‘“‘ '

conclusion of Theorem 2.1 holds for \l“.

e

T T T R i s

then the




We shall see below that the case p = 1/3 is most common in applications., In this case,
(p)

the distribution of X can be described without use of convex minorants. As stated by

Prakasa Rao (1969), the distribution of x(l/S)

is that of T/2, where T is the random
value at which W(t) - t2 attains its maximum. Chernoff (1964, Theorem 1, p. 37) proves that
T has a density of the form h(x)h(-x), where h is a function involving partial derivatives

of a particular solution of the heat equation.
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i. Applications of the Theorem

This section consists of four examples of the application of Theorem 1. We shall see that
Theorem 1 can be used to reduce the derivation of the asymptotic distribution of an estimator
of a monotone function to the verification of specific conditions, each of which is suited to

more fundamental probabilistic approaches.

Example 1:  The Isotonized Mean, Equally spaced deterministic t's.

Let the functional 8(*) operate on the space of cumulative distribution functions with
finmite expectations by assigning to each CDF its expectation. The induced function y satis-
fies pu(t) = th. The 1sotonized mean ﬁn alluded to in section 1 is a.natural estimator.

]
Since § (s) = slogcom(s) {(i, ) X,). 023 < n} = slogcom(s) {(i/n, ) X /M. 0 < 3 < 1LY

j=1 i=1

def ine ‘(() to be the random function defined by linear interpolation between

1
£ G- F P I S, SR, (Recall tnj = j/n.) Thus ant) is a normalized cumulative

sum process.  Theorem 1 will be applied to give the following result:

Corollary 1
Assume the following six conditions are met:

1. xnl, i = 1(1)n are mutually independent, for each n.

EX = u(i/n)

ni
-\ .‘ )
3. Var x"‘ =g <o (and ¢ > 0) and (x“i - uli/mM)°, 1 <1 <n, n>1 are uniformly
intearable.
4. 0 < s < 1 such that sup u(t) v u(s) < inf u(t) for some & > 0, and W is
tas=§ t> (s+8)
Increasing in a neighborhood of s.
5. ¥ has an Nth order derivative at s.
6. N 1s the smallest positive (finite) integer with n(N)(s) > Q.
Ther
r
| 1/(2N+1) -1
N/ (2N+1) (N+1) ! \ - (e 7 h
n e (un(s)-u(ﬁ)) _é’ X .
I (N) 2N
Ul ‘S)l‘ ) n*»e

-




Proof: The conditions of Theorem 1 are checked with p = (2N01)—1. o(s) = o,

(N)

pls) = u (s)/((N+1)!), and zn the normalized cumulative sum process. Denote

u(n,c) = u(s) by ¢(n,c). For notational convenience, we ignore the negligible effect of ns
failing to be an integer.
We sketch the verification of the first Hitting Time Condition. (The others are routine

variations.) In this example, the first Hitting Time Condition reduces to

ns

1im lim P{ 2 xni/" < = t(n,c) - (s-k/n);kn,c). some k < ns}, which involves q(u,c) =
Cw e 1=K

ns ns
P{izk (X ~wle ) > nt(n,e) + (ns-k)e(n,c) + igk (u(t )-uls)), some k < ns}, the prob-

ability that a cumulative sum process crosses a line, where the sequence of cumulative sums
depends on n and the line depends on n and on c¢. Since the fourth assumption of the

corollary implies that u(tni) = E(xni) < u(s) for i < ns, q(n,c) <

ns
P{ z (xni—u‘tni)) > nt(n,c) + (ns-k)e(n,c), some n < ns}. This last expression can be
1=k
written as P(SM > nt(n,c) + teln,c), some O < R < ns!, where Snt is the (th cumulative

sum of n independent random variables with variance 02. Using the Dubins-Savage inequality
(see Dubins & Savage (1965) or Dubins & Freedman (1965)) or the Hijek~Rényi Inequality applied
0 < % < n} with constants e x(n,c)f(92+ nt(n,c)k) (see Chow,
Robbins, and Siegmund (1970), p. 25), it can be shown that F(Sn

to the submartingales Sil'

e > nt(n,c) + te(n,c), some
3~ 2 2 2, - ;
R ns} < (1 + g(n,c)nt(n,c) /o7) 1 - (1 + ¢ “*X?N(2N-l)o (s)L/07) 1. This implies

lim lim q(n,c) = 0, as desired.
S

After suitable changes of notation, the weak convergence condition 1s seen to requitre the

weak convergence of

ns+i
£ . 8 N ey = WETHN 2 (uls+i/n) - u(s)) .
(2) a1 7 + 1 173
i=1 (k(n)) "o i=1 olk(m)) " ° o<lt]<kin

8=
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where k(n) = 2cnl-p. Assumption 3 ensures that the Lindeberqg Condition holds for

((xp S p((ns+i)/n)), 1 < i < k(n)}, which in turn implies that the first component of ()

converges weakly to Brownian motion (see Billingsley (1968), p. 77, problem 10.1). The

i - ; N+ +1/2
component 1s deterministic and converges uniformly to p(s)t 1(2c)N / /

p(s) = u(N)(s)‘(N*l)!. Therefore the local weak convergence condition is satisfied, and i

g, where

proof of Corollary 1 is complete.

Example 2: [Isotonized Mean; Random t's

Let 8(+) and u be as in Example 1. Corollary 2 shows that thelassumption of equally
spaced deterministic t's can be relaxed. In what follows, Fn will be the usual right-
continuous function and on will be the left-continuous empirical quantile function. Note that

;o =P AT .} and T . =0 (& .) if there are no tied T .'s.
ni n ni ni “n’ ni ni

Corollary 2.

Assume that conditions 3 through 6 of Corollary 1 and the following three conditions are

met:
L. {Tni’ 1 <1 < nf are the order statistics of a sample of size n from a distribution
F  which possesses a positive derivative f£i¢s) at. s.
4« B(X .} = ulT .} and (X, = pw(® .}, 1 < i < n} is a set of mutually independent
ni ni ni ni = -
random variables for each n.
3« For every m, {(X.. = wlr J): ¥ < 4 < 0} ana {T ., 1 < i< n} are independent sets
ni ni -7 = ni S e
of random variables.
Then

%

N/ (2841 [ (e 15 (s | 1/ (2N4D) ((2ne1) 7Y

(b_(s) - u(s)) » X
u(N)(S)U2N n

where ﬁn(s) is the jisotonized mean based on {(Tni' xni)' L <3 <y on :_13 evaluated at «.
Note that the limiting distribution is exactly the same as in Corollary 1, except for the

presence of f(s) in the normalizing constant.

-9~
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Proof: Let p, o(s), and zn be as in the proof of Corollary 1, and let p(s) = .

u‘N)(s)/(f(S)(N+l)!). Recall that ﬁn(s) = un(Fn(s)), where v is the isotonized mean based

-1/2 -p L
on ((tni' X ), since p < 1/2. ‘

), 1 <i<n}. Note that d_ = F (s) = 6 (n
i -7 = n n

P

Since the conditions can be verified for s or for s+Dn, we choose the more convenient form

) = OP(n

for each condition. By substitution, the Hitting Time Condition involves probabilities q(n,c)

which are obtained from those of the first corollary by substituting Tni for tni and

& i e i b i i .= e E =
nFn(s) for ns Since the Tnl s are increasing in v Exnl u(Tn,l) u(T )

n,nFn(s)+1
u(Qn(Fn(s)+l/n)) < u(s) for i < nFn(s), and Hitting Time Condition follows from the argument
for Corollary 1.

The weak convergence condition involves the convergence of the process defined by linear

interpolation between the points of

2 (X (u(T

2 z n,nF(s)+i
kink yer (k(n))

) - u(s))

/2 i
0<2<k(n)

i u(Tn,nF(s)+i))

- % n,nF(s)+i
1/2o =

1 c(k(n))1

(3)

The first component converges, as before, and is independent of the second component, which is

now a random process. The conditions of the corollary imply that the second component converges

(N)

weakly to the nonrandom process (u (s)/(f(s)(N+l)!)tN+1/c. A proof of this fact can be

based on the observation that since u is monotone, {u('rnj

statistics of a sample from the CDF Feu_l. Therefore the second component requires a local

), 1 <3j <n} is the set of order

weak convergence of cumulative sums of spacings. If Fou-l is an exponential distribution
the fact that the spacings are independent exponentials can be used to construct an embedding
in a Brownian motion from which the result follows. The differentiability of F at s is used

for a Taylor series expansion.

Example 3: Smoothly weighted linear combinations of order statistics; equally spaced observa-
tions
Let J be a smooth (see below) weight function defined on [0,1] with fJ(u)du = 1.

6(F) is defined to be the solution of fJ(u)Q(u-e(F))du =0 (where Q = F_l) for all

-10-
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continuous F  such that the integral is well-defined. For all F members of a specific
translation family, ©(F) is a percentile of F. Which percentile 0(F) aives depends on
the weight function and on the shape of F. For example, if J is symmetric about 1/2 and
the distribution determined by F is symmetric, ©(F) is the median of F. The weight func-
tion 0 can be used to construct the following process from which a slogcom estimator will be

obtained.

Let i\‘, | N R denote the jth order statistic of the set x‘,...,x Then

(1) k'
for s in (0,1) fixed and R positive, define

\‘.
7 (s4t/n) = \ FOZALIR, oprage B 5 43 N”)’n and

I\
-'“”“4 n) = —'.\ J(0 (“”Hxn(ns)—wl' I £1 % UH)/n, where (ns) 1is the least integer

qreater than or egqual to ns. '.‘.n can be thought of as the cumulative sum process of Corol-
taries 1 and 2 centered at s (i.e., X‘.“H)—:’,nls)) with each sum of random variables replaced by

the J=weighted sum of the order statistics of the same set of random variables. Extend 2

n

to a continuous process on (0,11 by linear interpolation and define

n”(r:\ = slogeom(s) Ht,',’,n(n), 8 - 1}. For any finite set of integers A, define N(A)

to be the number of elements of A, Let .1"(1\\ denot e ) J(1',"(N(I\)*1)HX" ; 1 e A\'(i) n.
icA !

rhen h“(-:\ can be written as  [N(L*) max .ln(l.) + N(U*) min J“(U)l/N(l.' u U%), where the

maximum is taken over the sets 1, of the form {1 hIL s (ns)! for some i, L* is the

largest such set for which the maximum 18 attained, the minimum is over sets U of the form
meY + 1 1 < kb, and U* 18 the largest such set for which the minimum is obtained. Note

that L* and U* are disjoint.

Corollary 3.
If the following six assumptions are met, then
N ......
=S | ] 2N+ 1

ONHL [ (Nt o ((28+¢1) )
n B 1 (n“(s\ u(s)) d_‘ X

n s




1 ; 2 )y 5 ,
I XM - u(“) are independent, identically distributed random vartables with camulat ive

distribution function F.

f J@MQ(m)du = 0, f‘l(n)du =1, and u 18 non-decreasing on (0,11,

1. 0 is continuously differentiable non=negative function whose J' satisfieos a
. e 1
Holder condition for some vy, o < y < 1. The support of J is a compact subset

«

of (0,1).

Y
&, O = H JIF(X)) I Py Fmin(x,y)) (1 = F(max(x,y))dxdy -~ O,
5. uw has an Nth order derivative at s, 0 <« 8 < 1, where N i= the smallest (finite)

|(N)(:=) > 0

integer with

6. F is absolutely continuous, with strictly positive density  such that £ converaes

to zero at infinity and ' is bounded.

The first two conditions describe the model and assert that the weicht function 0 1w
appropriate. The third condition (which includes a requirement that 0 tirim) ig uszed to verafy
the local Weak Convergence. The non-neqativity of 3 will be used in the proof of the Hitting
Time Condition. The fourth condition is more a definition than a condition, =ince the third
condition ensures the integral is finite. The {ifth condition describes the local behavior of
#ooat  s. The sixth condition is a regqularity condition used to obtain the Corntsh=rizher ox
pansion needed to compute the drift component of the local weak convergence.

Corollary 3 shows that if the xm. are all members of the translation family generated
by the CDF F, the relative efficiency of two different isotonized linear combinations of ordey
statistics with weight functions Jl and is determined by the ratio l‘(-‘l.l'\ -'\.'4\,1‘\.

)
.

where o(J,F) = fj' J ) J(V) [min(u,v) =usv]dQ(u)dO(v) . Corollary 1 shows that if U has finite
variance, the same formula gives the efficiency of an isotonized linear combination of order
statistics relative to the isotonized mean, although the weight function of the mean Jdoes not
satisfy the conditions of Corollary 3. This same ratio is the asymptotic relative efticiency
of two linear combinations of order statistics for estimating the location parameter of in
dependent, identically distributed random variables whose distribution iz a member of the

location family generated by F. Therefore, all the comparisons known for a simple location




problem carry over to isotonic estimation. 1In particular, if F does not have a variance,

Corollary 3 applies, and the isotonized version of any linear combination of order statistics
which trims will converge in the familiar manner. However, Corollary 1 does not apply. This
extreme case shows that the isotonized mean is sensitive to wild observations and isotonized
trimmed linear combinations of order statistics are more robust to heavy tails.

The proof of Corollary 3 can be described as showing that linear combinations of order
statistics are similar enough to sums of independent random variables. For the details, see
Leurgans (1978), Chapters IV and V.

The considerations of Example 2 imply that Corollary 3 can be extended to Tn which are

i

either other tractable deterministic sequences or order statistics from a suitable distribution.

Example 4: Estimation of a monotone density
Consider the estimation of a distribution F with support on the positive half-line using
a sample of n observations. Grenander (1956) suggested an estimator for the case in
which F has monotone (and hence decreasing) density. Grenander proved that this estimator
is the restricted maximum likelihood nonparametric estimator of the density f. Grenander's

estimator can be written as
f,(x) = - slogcom (x){(t, - Fn(t)). £ 0l

where Fn is the empirical distribution function of the observations. Prakasa Rao (19¢9)

proves the following result:

Corollary 4
Assume
1. f is a decreasing density on [0,),

s % .,Xn} are a sample from this density.

10

3. f is differentiable at s and f(s) < 0.




Then

1/3
Vi 3 ! T (1/3)
n l ] (fn(ﬂ) f(s)) d X .

£(8) £ (8)

To obtain Prakasa Rao's result from Theorem 2.1, use z;') - rn(t). u(s) = =f(s), o(s) = f(s),

p(s) = f(s)/2, and p = 173, The Hittina Time Condition can be obtained from Wald's Lemma.
The local weak convergence condition involves Nn(t), the empirical distribution function of

.2 , 1 < i <nl evaluated at s + 2en Pr. EH (1) is quite tractable and
ni . -p - n
(X € (s,842¢cn V) )
ni
gives the centering needed. A routine finite dimensional distribution and tightness proof
Lap 1/2
o S

shows that n(H“(t) - Eﬂn(t))/(u(s)(zvn converges weakly to W(t).

Notice that Theorem 2.1 can be used to extend Corollary 5 in several directions. The
density f may have first derivative zero. If some higher derivative of f is negative,
rates and limiting distributions based on the order of this derivative are obtained.
Furthermore, f need only be locally monotone in the sense of Example 1. Therefore fn can

be consistent even if the density function f is not totally monotone.




4. Proof of Theorem 2.1

Let v" denote the right-hand side of (1) and xnc the same expression with "nc re-

placing Mo The theorem will be established in the following steps:

I« X for all ¢, X d, X . (X will be defined below)
n nc = ¢ C
n e
) ()
2 xc d. X "
O
3. lim lim plu () = v“(l))(' lim lim Plxnc - Yn)) = 1.
IS AL O e

By Theorem 4.2 of Billingsley (1968) (p. 25), Y" Jg’ X, which implies Theorem 2.1,

Step 1. Since adding a line to a function increases the slope of the function's convex minorant
by the slope of the line

)

Moo (8) = u(s) = slogeom(s)((t, 7 (£) = 2 (8) = (t-s)u(s)), Jt-s| < 2en”

Translating the process so that the time scale of the function whose convex minorant is being

obtained 15 |[=1, ¢+ 1] and rescaling,

w5 et LG 0 slogeom(0)

n(z“(sozcn-pt)-zn(s))-2cnl-ptu(s)
((‘: 1/2 ' t *l’
(2cnl-p) o(s)

Since slogeom(0)  i1s a continuous functional on C[=1,+1), the local weak convergence condi-

tion implies the expression above converges in distribution as n » « to

1/ (2p) l (1+p) /2;’)

slogeomio) { (t,W(t) + (2¢) pls)/o(s) [t [t] < 1}, which can be shown (using

scale properties of the Wiener process) to equal (2cK(s))“2 xv, where

|(lop)/2p

X, = slogeom(0) { (t,W(t) + [t ). [t] < 2ek(s)) and K(s) = (u(s))ZP/(o(s))zp. Dividing

the last display by ()vx(s))l", we see that for fixed ¢, x“C converges in distribution

to X

I

1
1
|
|




1)
Step 2. The only difference in the definitions of X  and x“ 18 that in X  the
A <

points 1s restricted to lt] « 20K(s). Therefore to show X  converges in distrabution
¢

1t 18 necessary to show that large values of t do not affect the convex minorant of

(1+p) /2p g : :
wit) + |t . Since p < 1 implies the expanent aof p 1s positive, the proot of

step follows from W(t)/t _re (t*»), as is pointed out by Wright (1978). Por an expla

proof in the case p = 1/, see Prakasa Rao (1969) (Lemma 6.2, p. 34) .
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Figure 1.

Step 3. Fiqure 1 displays a realization of the process :‘.' . At s, the greatest convex
= ]
L s s " “P
minorant of 'I,h must lie entirely below l'l' the line connecting '.'“(a ren Py and

zn(a - en Py, Therefore no points of '4'.[ above this line can affect the
1

a\oqcm(a)((t,:‘.n(t)) t ¢« R} and to establish this last step of the proof 1t suttices t

-1 6=

sl

t

th

1t
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that 7 (t) lies above L1 for all t with [t-s| > 2en” P

1-p) / (2p
p, (1mR)/(2P)

[t - (s - cn-p)] > ¢n 3
2. lies above L1 for |t-s| > 2cn”P

Oy

n

Condition, it is easy to show that

e .

C o e

L I e

A e (23°PY/2P )0 00) /(0(8)¥2)  is positive (because p < 1),

term in (4) is 1, and the proof of the theorem is complete.

=17=

superimposed on the diagram. L3 1s the line through (s + cn-p. zn(s + cn

and above L, for |t - (s +# cn )| » cn

i = 1 and the Local Weak Convergence Condition imply that zn

is zero. Using the Local Weak Convergence Condition with t = =1/2

with high probability. [l has

both random slope and random intercept. It is more convenient to work with L2 and L3, also

Py)

random slope J(n,v) and L2 is the Xne through (s - cn_P. zn(s - cn-p)) with slope

n(s) - (2cn ™) p{s). It can be shown that if zn is above L for

2
e

and Y“ = xnc' Therefore it suffices to show that the
conditions of the probability that zn lies above two lines, for each of two separate intervals

of t, is one in the appropriate limit. We shall show that the Hitting Time Conditions with

lies above L3

appropriately high probability. The other three Hitting Time Conditions are used in the same
manner, and then the Bonferroni Inequality can be used to complete the proof.

Thus it remains to show that lim lim p(n,c) = 1, where (rearranging)

pin,c) = Plzn(s) = L3(s) > L3(t) - znm + zn(s) ~ L3(s), t < s}. The probability that
. Z,(8) - L3(s) exceeds L3(t) - Z,(8) + 2 (s) - Li(s) is less than the probability that

Z (s) - L3(s) 1is greater than a fixed constant t(n,c) and that this same fixed constant 1s
. greater than L3(t) - zn(t) + Z“(s) - L3(s). Applying the Bonferroni Inequality to the inter-

section of the above two events, and recalling the definition of L](t) in the

(4) pin,c) > P2 (s) - L3(s) > t(n,e)} = P(2 (t) ~ 2 (s) « L (1), some ¢t <

The Hitting Time Condition therefore implies the 1lim lim of the last term (minus sian tncluded)

{ tails, see Leurgans (1978), chapter 3, section 3) that the lim of the first term is
! A e

-1
@((:*l)\c(zp) /5). where 0 < 7 < 1 (from the definition of ¢t(n,c)),

and ¢ 1s the cumulative dio-

tribution function of the standard normal distribution. Therefore the lim lim

O o

(as in the diagram), then

it can be shown (tor de-

with non-

for t < s with

Hitting Time

s}

of the tirst
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. Remarks

Example 1 i1s a generalization of Brunk's Theorem 5.2. It should be remarked that Brunk's
condition that "the observations satistfy Lindeberg's condition" can mislead the unwary: from
the proof of example 1| we see that the observations must satisfy local Lindeberg conditions,
which are unrelated to a global Lindeberg Condition. Wright's paper also generalizes Brunk's
Theorem, and 1s the only paper known to the author with results for N > 1. Wright does not
require that N be an integer and allows a different variance structure, but otherwise his
results correspond to Example 1 and 2.

The estimators of Examples 3 and 4 have not been discussed in the literature. However,
the results of Robertson and Wright (1975) include monotone estimators of the form
;“(s) = max mann(L U U), in the notation of Example 3. Robertson and Wright give conditions
under which their minimax estimators are consistent for u(s), but their methods do not give
a rate of convergence. Corollary 3 aives such rates for slogqcom estimators “n' It is natural
to conjecture that u and &n have the same asymptotic behavior, even though u and ;“

are identical only in the case of Example 1. Unlike ﬁn(s). (s) 1s not always a monotone

L
function of s. Isotonized percentiles of the Robertson and Wright type are also discussed by
Casady and Cryer (1976).

Example 4 1s due to Prakasa Rao (1969), and was the first asymptotic distribution obtained.

Related hazard function estimators are discussed by Prakasa Rao (1970), Barlow and van Zwet
(1970) and Barlow, et.al (1972). All of these results can be obtained from Theorem 2.1 and can
be generalized in the manner described for Example 4.

Recall that the isotonized mean at s (Qn(s)) is the mean of the xni's over an adaptive-
ly chosen neighborhood of s. Theorem 5.8 of Barlow, et.al (1972) and Theorem 3.2 of Davis
(1972) point out that for each s, if slightly wider deterministic windows centered at s are
used, the resulting estimators converge more rapidly. However, this result appears to be the
same sort of superefficiency result obtained in Example 1 for N > 1. In the case of Barlow,
et. al, s must be at the center of every window. TIn Example 1, s must be exactly a point
at which ' (s8) = 0, but some other derivative is positive. If one is interested in estima-

tion of an entire function, both kinds of s are isolated. Also, the deteministic window

18-
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estimators need not give monotone estimators of u(s).

The fact that [ can be consistent in some cases even when u is not monotone is re-
miniscent of Theorem 3.4 of Barlow, et.al (1972), which states that likelihood ratio tests that
some group means (normal errors, variances known and equal) exhibit a specified partial order
against the null hypthesis that the means are all equal is an unbiased test of some alternatives
which do not have the specified partial order against the same null hypothesis. The applica-

tion to estimation does not appear to have been noted previously.
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